
RustZone:	Writing	Trusted	
Applications	in	Rust

Eric	Evenchick
Black	Hat	Asia	2018



About	Me

• Principal	Research	Consultant	
@	Atredis	Partners

• Founder,	Developer	of	Open	
Source	Hardware	Things	@	
Linklayer Labs



Outline

• Trusted	Execution	Environments
• TrustZone
• TEE	Problems
• Rust
• Rust	+	TrustZone
• Demo
• Questions



Trusted	Execution	Environments



What?

• An	isolated	environment	within	a	processor	for	performing	secure	
operations
• Segmentation	of	code,	data,	and	hardware	access
• Combination	of	hardware	features	and	software



Today’s	TEEs

• Hardware:
• AMD:	Platform	Security	Processor
• Intel:	Trusted	Execution	Technology,	Software	Guard	Extensions	(SGX)
• ARM:	TrustZone

• Software:
• Trustonic Kinibi
• Qualcomm	QSEE
• OP-TEE



Use	Cases

• Authentication
• Android	GateKeeper

• Financial	Applications
• Secure	Boot
• DRM
• WideVine

• An	additional	layer	of	protection	from	
the	host	OS
• Protect	the	system	from	the	user	L



TrustZone



The	TrustZone TEE

• The	ARM	TEE
• Normal	and	Secure	Worlds
• Normal	World:	Rich	OS	and	applications	
(Linux,	Android,	QNX,	etc…)
• Secure	World:	Limited	operating	system	
and	Trusted	Applications
• Processor	can	switch	between	two	worlds
• Configure	processor	to	restrict	access	to	
resources



TrustZone in	Practice

http://genode.org/documentation/articles/trustzone



TEE	Problems



TEE	OS	Protections

• ASLR	is	Rare
• No	Stack	Canaries	or	Guard	Pages
• Secure	World	has	fewer	protections	than	
Normal	World?
• No	High	Level	Language	Support,	we	must	
write	C!



Writing	(good)	C	is	Hard

• Common	Memory	Problems
• Buffer	overflows
• Use	after	free

• Type	Issues
• Void	means	nothing,	and	everything!

• Limited	Help	from	Compiler
• Programmers	can	do	Silly	Things
• memcpy,	strcpy,	sprintf,	etc…



Example:	WideVine Trusted	Application

• DRM	Implementation	for	Android
• Undocumented	Command	with Buffer	
Overflow
• End	Result:	Arbitrary	Code	Execution	in	
Secure	World

• More	info:	http://bits-
please.blogspot.ca/2016/05/qsee-
privilege-escalation-vulnerability.html



Example:	Samsung	OTP	Buffer	Overflow

• Service	in	Normal	World	to	
generate	a	One-Time	Password	
(OTP)
• Any	user	can	access	this	service!
• Trusted	Application	parses	request	
leading	to	stack	buffer	overflow



Rust



What’s	Rust?

• New	systems	programming	language
• In	development	since	2010,	sponsored	by	Mozilla
• Works	for	embedded:
• Works	without	libc
• Compiles	to	bytecode
• No	garbage	collection	or	runtime
• Raw	memory	access



Why	Rust?

• Compile	time	memory	safety	checks
• Memory	ownership	and	borrow	checking
• Find	bugs	at	compile	time,	not	runtime
• eg,	match

• Good	tools,	getting	better
• Great	C	Foreign	Function	Interface!



Rust	/	C	FFI

• Call	C	from	Rust	and Call	Rust	from	C
• Need	unsafe	blocks	for:

1. Dereferencing	a	raw	pointer
2. Calling	an	unsafe	function	or	method
3. Accessing	or	modifying	a	mutable	static	variable
4. Implementing	an	unsafe	trait

• Goal:	limit	unsafe	code



Learning	Rust

• The	Rust	Book:	https://doc.rust-lang.org/book/
• Paper	version	soon:	https://nostarch.com/Rust

• Rust	by	Example:	https://rustbyexample.com/
• Julia	Evans’	Blog:	https://jvns.ca/categories/rust/



Rust	+	TrustZone



Step	1:	Get	an	OS

• Need	an	OS	to	run	in	the	Secure	World
• OP-TEE
• Free	and	Open	Source
• Implementations	for	many	platforms,	including	QEMU
• Well	Documented
• https://www.op-tee.org/



Step	2:	Generate	Rust	Bindings

• We	need	Rust	bindings	for	OP-TEE’s	API
• bindgen to	the	rescue!

extern "C" {
pub fn TEE_MACInit(operation: TEE_OperationHandle,
IV: *const c_types::c_void, IVLen: u32);

}

void TEE_MACInit(
TEE_OperationHandle operation, const void *IV,
uint32_t IVLen);

bindgen



Step	3:	Write	a	Rust	Library

• Yes,	a library.
• Need	to	implement	5	functions:
• TA_CreateEntryPoint
• TA_DestroyEntryPoint
• TA_OpenSessionEntryPoint
• TA_CloseSessionEntryPoint
• TA_InvokeCommandEntryPoint



Step	3:	Write	a	Rust	Library
pub fn InvokeCommandEntryPoint(_sessionContext: *mut c_types::c_void,

commandID: u32, _paramTypes: u32,
params: &mut [optee::TEE_Param; 4]) -> 

optee::TEE_Result 
{

ta_print!("Rust TA InvokeCommandEntryPoint");
match commandID {

0 => {
unsafe {params[0].value.as_mut().a += 1};
ta_print!("Incremented Value");

},
1 => {

unsafe {params[0].value.as_mut().a -= 1};
ta_print!("Decremented Value");

},
_ => {

return optee::TEE_ERROR_BAD_PARAMETERS;
}

}
return optee::TEE_SUCCESS;

}



Step	4:	Compile,	Link,	Sign

Compiled	Rust	
Library

Compiled	TA	
Header

libutee,	libmpa,	
libutil

Linker

OP-TEE	Linker	
Script

TA	ELF

Signed	TA

sign.py



Demo



Conclusions



Conclusions

• TEEs	are	useful,	but	have	the	usual	issues
• Rust	is	an	potential	replacement	for	C	with	some	added	benefits
• Should	you	write	your	Trusted	Applications	in	Rust?



Thanks!	Questions?

eric@evenchick.com
@ericevenchick
https://github.com/ericevenchick/rustzone


