RustZone: Writing Trusted
Applications in Rust

Eric Evenchick
Black Hat Asia 2018

About Me

* Principal Research Consultant
@ Atredis Partners

* Founder, Developer of Open
Source Hardware Things @
Linklayer Labs

inklayer

Outline

* Trusted Execution Environments
* TrustZone

* TEE Problems

* Rust

* Rust + TrustZone

* Demo

* Questions

Trusted Execution Environments

What?

* An isolated environment within a processor for performing secure
operations

* Segmentation of code, data, and hardware access
 Combination of hardware features and software

Today’s TEEs

* Hardware:
 AMD: Platform Security Processor

* Intel: Trusted Execution Technology, Software Guard Extensions (SGX)
* ARM: TrustZone

e Software:
* Trustonic Kinibi
 Qualcomm QSEE
* OP-TEE

Use Cases

LockSettingService
* Authentication I
* Android GateKeeper GatekeeperService Interface
* Financial Applications e
* Secure Boot s
e DRM Gatekeeper HAL module
* WideVine Iplmformvoepemem.po
* An additional layer of protection from I —
the host OS TRUSTED EXECUTION ENVIRONMENT (TEE) 0S Platform-Dependent

* Protect the system from the user ®

TrustZone

The TrustZone TEE

e The ARM TEE
e Normal and Secure Worlds

* Normal World: Rich OS and applications
(Linux, Android, QNX, etc...)

e Secure World: Limited operating system
and Trusted Applications

* Processor can switch between two worlds

* Configure processor to restrict access to
resources

Non Trusted

SOH'WOI' e

Trusted

SOﬁWO re

hOdeO re

TrustZone In Practice

Normal world Secure world
ARM SoC ARM SoC ' , |
[L] [o]
I(‘:PU e 7 L2 Cache Ethernet | HTC MMC "':PU o L2 Cache Ethemeti RTC MMC
/
‘ , J =1
M use | Grio ||aPu D ~ use ||erio ||GPU
R — A J
n—----: R ' world a-‘"-:) [}
:._.““' ___ — ,_,°°“" - Graphics | |12C UART awlich m ““"’ Graphics | | 12C UART
Vitemgt | 150U} Viverupt | 15CU__ |
LM e ||[| interrupt yeet | interrupt
Trrmmm e “ |¥ | Controller Security Controller e ' - |} | Controller Security Controller
System Bus (eg. AHB/AXI) System Bus (eg. AHB/AXI)

http://genode.org/documentation/articles/trustzone

TEE Problems

TEE OS Protections

* ASLR is Rare
* No Stack Canaries or Guard Pages

* Secure World has fewer protections than
Normal World?

* No High Level Language Support, we must
write C!

. . . All my friends are using strcpy. But I'm not, because |
W t d (H d understand how dangerous it is. They say | could protect
r I I n g g O O | S a r myself, but | know that only avoiding strcpy is 100%

effective.

=

And why would |
take a chance like

e Common Memory Problems
* Buffer overflows
* Use after free

* Type Issues
* Void means nothing, and everything!

* Limited Help from Compiler

* Programmers can do Silly Things
* memcpy, strcpy, sprintf, etc...

% True Bugy Waitf © @natashenka

#truebugswait

(((((((

Example: WideVine Trusted Application

* DRM Implementation for Android

e Undocumented Command with Buffer
Overflow

* End Result: Arbitrary Code Execution in

Secure World D WI DEVI N E

* More info: http://bits-
please.blogspot.ca/2016/05/gsee-
privilege-escalation-vulnerability.html

Example: Samsung OTP Buffer Overflow

 Service in Normal World to
generate a One-Time Password
(OTP)

* Any user can access this service!

* Trusted Application parses request
leading to stack buffer overflow

Rust

What’s Rust?

* New systems programming language
* In development since 2010, sponsored by Mozilla

* Works for embedded:
* Works without libc
* Compiles to bytecode
* No garbage collection or runtime
* Raw memory access

Why Rust?

* Compile time memory safety checks
* Memory ownership and borrow checking

* Find bugs at compile time, not runtime
* eg, match

* Good tools, getting better
* Great C Foreign Function Interface!

Rust / C FF

e Call C from Rust and Call Rust from C

* Need unsafe blocks for:
1. Dereferencing a raw pointer
2. Calling an unsafe function or method
3. Accessing or modifying a mutable static variable
4. Implementing an unsafe trait

e Goal: limit unsafe code

Learning Rust

]
* The Rust Book: https://doc.rust-lang.org/book/ THE RUST
. . .) PROGRAMMING
Paper version soon: https://nostarch.com/Rust LANGUAGE

* Rust by Example: https://rustbyexample.com/

* Julia Evans’ Blog: https://jvns.ca/categories/rust/

Rust + TrustZone

Step 1: Get an OS

e Need an OS to run in the Secure World

* OP-TEE
* Free and Open Source
* Implementations for many platforms, including QEMU
* Well Documented
 https://www.op-tee.org/

Step 2: Generate Rust Bindings [T

* We need Rust bindings for OP-TEE’s API
* bindgen to the rescue!

void TEE_MACInit(
TEE_OperationHandle operation, const void *1IV,

uint32_t IVLen);
l bindgen
extern "C" {

pub fn TEE _MACInit(operation: TEE OperationHandle,
IV: *const c_types::c_void, IVLen: u32);

Step 3: Write a Rust Library

* Yes, a library.

* Need to implement 5 functions:
* TA CreateEntryPoint
* TA DestroyEntryPoint
* TA_OpenSessionEntryPoint
* TA CloseSessionEntryPoint
* TA InvokeCommandEntryPoint

Step 3: Write a Rust Library

pub fn InvokeCommandEntryPoint(_ sessionContext: *mut c_types::c_void,
commandID: u32, paramTypes: u32,
params: &mut [optee::TEE Param; 4]) ->
optee: :TEE Result

{
ta print! ("Rust TA InvokeCommandEntryPoint");

match commandID {
0 => {
unsafe {params[0O].value.as mut().a += 1};
ta print! ("Incremented Value");

b

1 => {
unsafe {params[0].value.as mut().a -= 1};
ta print! ("Decremented Value");

b

_ ==
return optee::TEE ERROR BAD PARAMETERS;

}

}
return optee::TEE SUCCESS;

Step 4: Compile, Link, Sign

Compiled Rust
Library

Compiled TA , ,
Header — Linker —p TA ELF — sign.py

libutee, libmpa,
libutil
OP-TEE Linker
Script

Signed TA

Demo

Conclusions

Conclusions

* TEEs are useful, but have the usual issues
* Rust is an potential replacement for C with some added benefits

* Should you write your Trusted Applications in Rust?

Thanks! Questions?

eric@evenchick.com

@ericevenchick

https://github.com/ericevenchick/rustzone

